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Problem 1

A)

2, 8, 32, 128, 512, . . .

i) Give the recurrence relation for this sequence.

ii) Find a formula in terms of n for each term un.

B) A sequence is defined by the recurrence relation un = run−1 and u0 = a

Find the formula (involving n, r and a) for the nth term.

Problem 2

A The Fibonacci Sequence is defined by Fn = Fn−1 + Fn−2 for n ≥ 2 with

F0 = 0 F1 = 1

i) Find the formula for Fn, the nth Fibonacci number (by using the aux-

iliary equation).

ii) By substituting the recurrence relation formula in place of the numer-

ator of Fn

Fn−1
, find the limit of the ratio Fn

Fn−1
as n→∞.
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iii) If we are only given Fn, and n is large, what can we multiply this by

to get Fn+1?

Try this by finding F11 given that F10 = 55.

Part A(iv) (as well as Problem 3) is left as an optional extra. If

you’re interested please read the explanation of continued fractions

at the end of these problems, or alternatively ask me to explain them

to you after the talk! Note: problem 3 does not need knowledge of

continued fractions. It is a similar question to Problem 2 part B)

iv) Using your answer to part A(ii), find the golden ratio, ϕ, as a continued

fraction.

B) I can climb stairs one or two steps at a time. How many ways can I climb

a flight of n stairs?

i) Start by counting the number of ways I can climb a flight of 1,2,3,4, and

5 stairs. Is there any recurrence relation between these you can notice?

Does this work generally? If so, why?

ii) By comparing this recurrence relation to the one in part A(i), write

down the formula for the number of ways I can climb a flight of n stairs.

Problem 3

A circle is divided into n sectors by drawing n radii. Show that the number of

ways of using three colours so that neighbouring sectors are coloured differently

is

2n + 2(−1)n
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Explanation of continued fractions

A number, say 221
41 can be written as a continued fraction by writing:

221

41
= 5+

16

41
= 5+

1
41
16

= 5+
1

2 + 9
16

= 5+
1

2 + 1
16
9

= 5+
1

2 + 1
1+ 7

9

= 5+
1

2 + 1
1+ 1

9
7

= 5 +
1

2 +
1

1 +
1

1 +
2

7

= 5 +
1

2 +
1

1 +
1

1 +
1

7

2

= 5 +
1

2 +
1

1 +
1

1 +
1

3 +
1
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In general, continued fractions are normally written in the form

a1 +
1

a2 +
1

. . . +
1

am

However some continued fractions are never-ending such as in the following

example:

√
2 =

√
2
(
1 +
√

2
)

1 +
√

2
=

1 +
√

2 + 2− 1

1 +
√

2
= 1 +

2− 1

1 +
√

2

It’s clear that this process repeats if we do the same with the
√

2 on the denom-

inator of the RHS and so

√
2 = 1 +

2− 1

1 + 1 +
2− 1

1 +
√

2

= 1 +
2− 1

2 +
2− 1

1 +
√

2
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We can repeat this process infinitely to give

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

2 +
1

. . .

Incidentally, we can do this with any number, N :

√
N =

√
N

(
1 +
√
N
)

1 +
√
N

=
1 +
√
N + N − 1

1 +
√
N

= 1 +
N − 1

1 +
√
N

It’s clear that this process repeats if we do the same with the
√
N on the

denominator of the RHS and so

√
N = 1 +

N − 1

1 + 1 +
N − 1

1 +
√
N

= 1 +
N − 1

2 +
N − 1

1 +
√
N

We can repeat this process infinitely to give

√
N = 1 +

N − 1

2 +
N − 1

2 +
N − 1

2 +
N − 1

2 +
N − 1

. . .

Continued fractions have many uses including approximating irrational numbers

(in the above example
√

2) by taking successive terms of the continued fraction.

You may have noticed that if a number has a terminating continued fraction

(i.e. not ”never-ending”), then it is rational. Does the converse apply (i.e does

a non-terminating continued fraction imply an irrational number)?
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